
© Alexander K. Seewald
alex@seewald.at / alex.seewald.at

1

Ensemble Methods

Univ.-Lektor Dr.techn. Alexander K. Seewald
Österreichisches Forschungsinstitut

für Artificial Intelligence

© Alexander K. Seewald
alex@seewald.at / alex.seewald.at

2

Ensemble Methods

Idea: Reduce bias/variance of learning systems by combining
a set of different learning systems

Difference can be created in multiple ways:
• Using the same learning system with different training data

sets (Bagging, Boosting, MetaCost)
• Using different learning systems (Voting), additionally

also learning how to combine them (Stacking(C))

• Using different parameter settings for each learner
...

© Alexander K. Seewald
alex@seewald.at / alex.seewald.at

3

Ensemble Methods (2)

Some classifiers naturally output class probabilities
(e.g. Naïve Bayes), or can be modified to do so
(Decision Trees, SVMs, ..) For these, averaging over
class probabilities instead of predictions generally
gives better results even for small M (number of
combined models).

In Theory: Ensemble methods trade off predictive
accuracy with understandabili ty, yielding complex and
less comprehensible models which perform better.

In Practice: For datasets with small error rates, almost
all examples are classified correctly by all l earners,
thereby limiting the gains from any combination
approach.

© Alexander K. Seewald
alex@seewald.at / alex.seewald.at

4

Selection by Crossvalidation

Common procedure in ML & DM: Given a new dataset,
• Run a set of learning systems on the dataset, and determine

error estimate via cross-validation.
• Choose algorithm with lowest CV error.
⇒⇒Ensemble Method w/o combination (=Selection by CV)

An alternative approach
• Study given task and decide on requirements (e.g.

understandabili ty, performance, speed...)
• Run only those set of algorithms which can reasonably be

expected to fulfil all the requirements.
• If understandability is not an issue, Ensemble Methods can

be a better way to make full use of experimental runs.

© Alexander K. Seewald
alex@seewald.at / alex.seewald.at

5

Bagging

Inspired by 0.632 Bootstrap (Bootstrap aggregation (ing))
• Create a set of M 0.632-bootstrap samples from the

original training set by sampling with replacement. Train
one classifier on each bootstrap sample and average over
their class predictions.

• Mainly a variance-reducing technique. Not useful for high
bias, low variance learning methods (Linear methods,
including SVMs with linear and nonlinear kernels).
Commonly used with Decision Trees or Stumps
(=Decision Trees with a single level, related to OneR)

© Alexander K. Seewald
alex@seewald.at / alex.seewald.at

6

Boosting

AdaBoost.M1:

• Apply the same learner sequentially to reweighted training sets, given more
weight to examples which have been misclassified previously.

• Final classification is a weighted vote of the component learners.

• Improves dramatically on the performance of even weak base learners; reduces
both bias and variance of base learners.

[Breiman,96]: AdaBoost + C4.5 = best off- the-shelf classifier in the world

Equivalent to Forward Stagewise Additive Modeling from Statistics.

1. Initialize the example weights wi=1/N for i=1,2,..,N

2. For m=1 to M:

(a) Fit a classifier fm(x) to training data weighted with wi

(b) Compute weighted error Errm=Σwi I(yi≠sign(fm(xi)))/Σwi

(c) Compute am=log((1- Errm)/Errm)

(d) Set new wi to wi (exp(am(I(yi≠sign(fm(xi))))), i=1,2,..,N

3. Output final f(x) = Σam fm(x)

© Alexander K. Seewald
alex@seewald.at / alex.seewald.at

7

Voting

Unweighted Voting
• Choose a set of base learners to combine (e.g. SVM poly.,

NB, C4.5, RIPPER, IB1)
• Train each base learner on the same training data.

• For new, unseen example: Query each base learner, and
average over their predictions / class probabilities.

• Very simple; almost no additional computational cost
• Mainly a bias-reducing technique: if the bias of the

combined learning system is sufficiently different, the
overall bias of the combined system should be smaller.

© Alexander K. Seewald
alex@seewald.at / alex.seewald.at

8

Grading

Grading: Learning to predict errors of multiple learning
systems via another learning system, and only vote those
not predicted to err.

• Compute cross-validation estimate of the prediction for
each example and base learner. Learn a set of associated
error learner which are trained to predict the CV errors of
the base learners based on the original input attributes.

• Vote all learning systems, weighted by one minus the
predicted probabili ty of an error. Probability of error is
estimated by the associated error learner.
Shown to be qualitatively equivalent to accuracy-
weighted Voting (where accuracy is estimated via CV)
for the best-performing error learning system, so most
of the above is not really necessary....

© Alexander K. Seewald
alex@seewald.at / alex.seewald.at

9

StackingC

StackingC: From unweighted Voting to weighted Voting

• Compute cross-validation estimate of the prediction for
each example and base learner. Retrain all learners on full
training data afterwards.

• The predicted class probabil ites from the internal CV are
then used with a regression learner (e.g. Linear
Regression) to find the best weights to give to each
classifier-class combination. For each class StackingC thus
computes a weighted vote of all classifiers' predicted
probabilities for that class; and chooses the class with
highest probability.

• As Grading, StackingC is at least ten times slower (CV!)
than unweighted Voting.

© Alexander K. Seewald
alex@seewald.at / alex.seewald.at

10

Stacking

Similar to StackingC, but can use any learner to learn the
final prediction from the predictions or class
probabilities of the base learners.

• Slower than StackingC, since the training sets are larger
(for base learners which return class probabil ities) and
most learners are more complex than Linear Regression.

• Performance slightly
worse than StackingC.

• Very general approach.
Can simulate each shown

Ensemble Method

(except Boosting)

© Alexander K. Seewald
alex@seewald.at / alex.seewald.at

11

Stacking vs. StackingC

Stacking directly predicts the
true class from the predictions /
class probabilit ies of the base
learners; can use any learner to
predict true class. Can simulate
all shown ensemble schemes
(except Boosting) – at
additional computational cost.

StackingC predicts each class
separately. Base learners need
to output class probabili ties.
Learns only from the class
probabilit ies relevant to each
class instead of all of them!
This focusses the learning
process, is faster and gives
slightly better results.

© Alexander K. Seewald
alex@seewald.at / alex.seewald.at

12

Other Ensemble Methods

• Meta-Decision Trees: DT predicts best model to use

• Cascaded Generalization: Stacking done sequentially

• Bagging+Voting, Boosting+Voting, Bagging+Boosting...
• Bagging/Boosting over attributes

• Random Decision Trees (=Bagging over attributes &
examples, and learning an enormous number of DTs)

• Mixture Models from Statistical Theory

...

Computationally very costly approaches versus small
improvements in error rate

= The Law of Diminishing Returns

© Alexander K. Seewald
alex@seewald.at / alex.seewald.at

13

Ensemble Methods on USPS Digits

Test Set Error: Error of model on independent test data
 (i.e. not used for training)

ZeroR (Baseline) 82.11%
OneR 68.56%

Naïve Bayes 28.70%
RIPPER (Rule Learning) 16.64%

C4.5 (Decision Tree L.) 15.00%
Linear Regression 13.05%

Logistic Regression 10.91%

SVM w/ linear kernel 7.08%
IB1 (Instance-Based L.) 5.63%

SVM w/ poly. kernel 4.29% = Selection-By-CV

Bagging C4.5: 10.76%
Vote: 6.73%
Boosting C4.5: 6.58%
Stacking-MJ48: 4.48%

© Alexander K. Seewald
alex@seewald.at / alex.seewald.at

14

Non-equal class distributions

In the US Postal Digit Dataset, all digits are equally
represented (~10%). This is not always the case...

• Predicting relevant documents for SwissProt/PRINTS
annotation: <1-5% of documents are relevant.

• Recognition of Species from MEDLINE: >7000 species,
Top 20 most frequent account for 45% of examples.

• Not all errors have equal cost. E.g. when predicting
susceptibili ty to cancer, we would like to err on the side of
caution - i.e. the error of predicting a susceptibili ty if there
is none is less grave than vice versa.

General solution: Cost-sensitive learning / classification

© Alexander K. Seewald
alex@seewald.at / alex.seewald.at

15

Cost-Sensitive Learning

Take the contingency table / confusion matrix and assign
potentially different costs for each entry (without loss of
generality, we can assume the cost of predicting the correct
class is zero): CxC Matrix Cost {cij}. Until now, all errors
had cost 1: Zero-One-Loss, equivalent to a cost matrix where
cij=1 for i≠j and cii=0. Instead of maximizing accuracy (=sum
of diagonal elements), we now aim to minimize total cost
TC=Σ cijeij .

 0 1 2 3 4 5 6 7 8 9
 355 0 2 0 0 0 0 1 0 1| 0
 0 255 0 0 6 0 2 1 0 0| 1
 6 1 183 2 1 0 0 2 3 0| 2
 3 0 2 154 0 5 0 0 0 2| 3
 0 3 1 0 182 1 2 2 1 8| 4
 2 1 2 4 0 145 2 0 3 1| 5
 0 0 1 0 2 3 164 0 0 0| 6
 0 1 1 1 4 0 0 139 0 1| 7
 5 0 1 6 1 1 0 1 148 3| 8
 0 0 1 0 2 0 0 4 1 169| 9

True class

Predicted class

© Alexander K. Seewald
alex@seewald.at / alex.seewald.at

16

Over/Undersampling

Idea: Equalize unequal distribution of classes by removing
examples of majority class (=undersampling) or by
duplicating examples of minority class (=oversampling).
Both approaches are also called stratification (~ strat.CV)

• Very simple, easy to do for all learners.

• For learners which can process weighted examples,
reweighting instead of resampling is also an option.

• However, only applicable to two-class learning tasks
where cij=c'j (i.e. where the cost of misclassifying example
is independent of predicted class)

• Undersampling loses valuable data, Oversampling makes
no difference for some learners (e.g. IB1)

© Alexander K. Seewald
alex@seewald.at / alex.seewald.at

17

ProbThreshold

Idea: Instead of choosing class with highest probabili ty,
weight each probabili ty with associated cost summed over
all classes (=c'j), and choose class which minimizes cost.

• Only applicable to learners which output usable class
probability distributions (e.g. Naïve Bayes, Logistic Reg.).
A weak restriction: most current learners are of this kind.

• Applicable to multi-class tasks.

• Only applicable to learning tasks where cij=c'j (i.e. where
the cost of misclassifying example is independent of
predicted class)

© Alexander K. Seewald
alex@seewald.at / alex.seewald.at

18

MetaCost

Idea: Relabel (=change true class) of training examples
according to class which is predicted to have minimum
cost. Estimate probabil ities of class by bootstrapping:
Repeatedly sample training set and run the classifiers, then
average over class predictions / probabil ities for each
example. "True" class of example is estimated after each
training run. Equivalent to minimizing conditional risk:

• Applicable to all learners regardless of whether they output
class predictions or probabil ities for all classes and for
arbitrary cost matrices.

• Similar to Bagging with ProbThreshold, but Output is a
single model trained on relabeled training data.

∑
∀

=
j

ijcxjPxiR)|()|(

