Exploratory Data Analysis
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Featur e Selection (from last week)

Feature Construction may yield a large number of
features. Feature Selection, i.e. reducing the number of
features, can improve classification accuracy as well as
speeding up the learning process. It is also essential to
achieve smpler, more comprehensible models.

Feaure seledion is well suppated in WEKA under
weka.attributeSeledion (e.g. CfsSubsetEval,
ChiSguaredAttributeEval and ReliefFAttributeEval).

Fedure construction can in simple cases be dore via
weka.filters.unsupervised.attribute. AddEXpression

More complex feaure construction can be dore in Java, or
In external programs which ouput the ARFF file format.
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Feature Selection in WEK A
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AttributeEvaluator:
determines the merit of
a spedfic feature subset

Many can be used,
including aacuracy of
spedfic classfiers
(WrapperSubsetEval)

SeachMethod: How to
search in the set of al
feature subsets. For n
features there ae 20
subsets - only very few
can be mnsidered, so
search is essential.

Output: A set of most
relevant attributes
(4,7,19 inthis case)




| ssuesin Feature Selection

Two reasons why attribute/fedure isfoundrelevant by FS
o [tisredly relevant to cetermine the true clasgfication
o It correlates with the classpurely due to chance.

Some common approadies to dstingu sh these two cases

« Use aCV instead of training chta. If afeatureischaosenin
al folds, it ismore likely to be relevant.

o Use multiple fedure seledion methods. A feaure diosen
by more than ore methodis more likely to be relevant.

o« Common sense: Arethe dhosen fedures plausible?

Feature Selection on full training data followed by CV
should be avoided. FS feeds back information on
attribute distributions and class correlations into the
training set and increases potential for overfitting.
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Exploratory Data Analysis

Part of Data Analysis that is conceptually most similar to
Artificia Intelligent Data Analysis.

Instead of algorithms, EDA focusses on uilizing human
visual sensefor analysisaswell as gatisticd methodks.

Complementary to Al DA. Not withou issues, seebelow.
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Histograms (WEKA: Visualize All)
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Histograms (2)

A Histogram shows the number of examples for which an
attribute has a specific nomina vaue, or a value within a
numeric interval. Numeric atributes need to be discretized
before ahistogram can be computed. In some @ses, the
class is also shown (as before). If there were a single
attribute which correlates well with the dass it would be
Immediately apparent [1 graphicd feature seledion.

« Bi-Histogram: two histogramsalong | o=
the same ais, above and kelow; for | & Mw('mh
comparing dff erence sets of examples| fs — i
(e.g. from different production W

batches, different locaions etc.) e e e

AAAAAAAAAAA
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Plot onefeature (as X) vs. another feature (asY)

Scatter plots

&Weka Explorer: ¥isualizing chumn-train 101 =l
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Class calaur

False.
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No correlation
between X and
Y in this case
(spherical
appearance)

Classes are
shown in red
(churn=true)
and blue.

Also shows
distribution of
al attribute's
values on the
right.




Many variants...

Scatterplots (2)

* Run Sequence Plot: X = exampleno./ time, Y = resporse

variable used to chedk
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Scatterplots (3)

« ROC curve: X=Fase Positive (FP) rate, Y=True Positive
(TP) rate; shows classfier performance in more detail

&W’Eka Claszzifier Vizualize: ThriesholdCurve. [Class wal 10| x|

. False Positive Rate (Mum) Y True Positive Rate (Mum)

ICnInur: Threshald (Murm) -

Feset | Clear | Save

Select Instance

-
-

Jitter |

~Plat: ThrEShDIdCIJ Click left mouse button while holding =aft= and =shift= to dizplay a save dialog. |
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Available in WEKA
by right-clicking on
model in result list
after training, and

choosing View
Threshold Curve for a
spedfic dass

If the ROC curve of
leaning algorithm A
Is always above the
ROC curve  of
leaning agorithm B,
it is unambiguously
better. This sldom
happens in practice.
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Scatterplots (4)

e Ham / Spam Error Curve: X = ham error, Y = spam
error; for comparing spam filtering systems. E.g. at an
acceptable ham error of 0.1%, the spam error of current
systemsisaround 3%. Noticelogarithmic scaleon X & Y!

‘crmlldscrm ROC, s0,0nce, noTOE  dat '

Ham aror (X): 'za’za.ROC, 50, 0nce, noTOE  dat

Probability that a ..}

good ham mail will
get lost (i.e.
classified as spam)

o0l
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Spam error (Y):

Probability that a ,,,|
bad spam mail will
get through (i.e.

classified as ham) Lot ' - » » ,

1e-05 00,0001
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CERAMIC STRENGTH

 Boxplots :row mean, standard deviation, paition d 1st
and 3d guartile, and autliers (see below, |eft)

o A smplified version which only shows mean and standard
deviation is also dften used (error bars, see below, right).
No owerlap between eror bars indicaes a significant
difference at around 9346 significance level (a=0.05
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Blockplots

A graphicd way for analysis-of-variance (ANOVA)

e Y =resporse variable

o X = dl combinations of nuisance variables (i.e. all features
that are suppcsedly na relevant vs. the response variable)

 Plot charader: levels of the primary factor (i.e. the one
feature whose dfed we want to analyse; 1 and 2 below)

Block Plot
1 Plot Character = Weld Method (2)
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Shows an arbitrary number of attributes at one glance

o Ead attribute isasdgned to alinein aspeafic direction.

* Thevaue of the attribute defines a paint onthisline.

o Conredingall lines shows asingle example with all values
 Related to gyph-based visualizaion. Only useful for small
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Dimensionality-reducing techniques

Very hard to recognize patterns in greater than 3D.
Dimensionality-reducing techniques reduce the number
of dimensions while preserving aspects of the data.

 Principal Components Analysis (PCA): computes
smaler set of features that accounts for most of the
variance In the data Each new fedure is a linear
combination d old features.

e Sammon Mapping: arbitrary (non
linear) mapping which triesto preserve |” .
euclidean dstances between datapoints. . *
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Further Reading & Software

Engineaing Statistics Handbook(EDA methods & ref.)
http://www.itl.nist.govdiv898handbookeda/eda.htm

Dataplot Software
http://www.itl.nist.govdiv898/software/datapl ot/

The R Projed for Statistical Computing
http://www.r-project.org/

GnuPlot plotting software
http://www.gnugot.info/
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