
© Alexander K. Seewald
alex@seewald.at / alex.seewald.at

1

Support Vector Machines et al.

Univ.-Lektor Dr.techn. Alexander K. Seewald
Österreichisches Forschungsinstitut

für Artificial Intelligence



© Alexander K. Seewald
alex@seewald.at / alex.seewald.at

2

Linear Models Revisited

Previously explained
• Linear Regression: very eff icient, but yields

suboptimal classification performance
• Perceptron: good classification performance

(converges to an arbitrary separating hyperplane)
However, no convergence guaranteed if data are
not linearly separable! Stochastic algorithm:
Learns different hyperplane depending on
(random) starting point.

Today's Lecture Plan
• Support Vector Machine: maximum margin

hyperplane explicitly maximizes classification
performance; guaranteed convergence (convex
decision problem); deals gracefully with not
linearly separable data.

• Logistic Regression: Simpler related model, also
works quite well i n practice.
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Logistic Regression

Logistic Regression arises from the desire to model posterior probabiliti es via
linear functions in x, while ensuring they sum to one and remain within [0,1] (one
regularization approach among many). LR is used in data analysis and inference,
where the goal is to understand the role of the input variables in explaining the
outcome. The model has the form:
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Very simple for two classes (K=2), since then there is only a single linear model.
Widely used in biostatistical applications where binary responses (two classes)
occur quite frequently. For example, patients survive or die, have heart disease or
not, or a condition is present or absent. θ is usually chosen by maximum
likelihood, thus ignoring P(TD) and assuming uniform P(f).
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Logistic Regression (2)

For simplification, let K=2, and let the two classes be yes (=1) and no (=0).
Let p1(xi;θ) = P(yi=yes | xi∈TD; θ) and p2(xi;θ) = P(yi=no | xi∈TD; θ) = 1-p1(xi;θ).
Assume all training examples xi contain the constant term xi0=1 to accomodate the
intercept (constant term) β10. β={ β10, β1} = θ. Then the log-likelihood P(f|TD) can
be written as:
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Logistic Regression (3)

Solve nonlinear equation of log-likelihood via Newton-Raphson algorithm

Assume N=|TD|,  p=num. of attributes in TD and...

• X is an N×(p+1) matrix with each row an input vector xi (extended with xi0=1)

• y is an N-vector of the outputs from TD.

• W is an N×N diagonal matrix with Wii= p1(xi;βold) (1- p1(xi;βold) ); Wij=0 f. i≠j

• p is the vector of f itted probabiliti es p1(xi;βold)

• z=Xβold+W-1(y-p) (adjusted response)

⇒ βnew = (XTWX) -1XTWz  computes the new β from the old one.

Start with e.g. β= { 0} p+1, repeat until convergence.

Also called iteratively reweighted least squares, because it solves a weighted
linear regression problem in each iteration step (compare with (unweighted)
linear regression: XT(y-Xw)=0 ⇔ w = (XTX) -1XTy)

In the two-class case the obtained hyperplane is very similar to SVMs, provided
the training data is linearly separable. Similar to SVMs, the training examples
further away from the hyperplane have less influence on the final model.
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Example: African Heart Disease

Logistic Regression yields the
model shown above. Z-Score
computes the Wald test with
null hypothesis = given
coeff icient is zero while all
others are not zero.
Approximately significant if
|Z-Score|>2 (shown in bold)

-4.285-4.130(Constant)

4.1840.043age

0.1360.001alcohol

-1.187-0.035obesity

4.1780.939famhist

3.2190.185ldl

3.0340.080tobacco

1.0230.006sbp

ZScoreCoeff.Attribute
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Support Vector Machines

Initially, a linear model in x. We don't minimize residual squared error (RSS)
or log-likelihood, but maximize the margin ||β|| resp. minimize C=1/||β||. f(x) =
xT.β+β0 is our function/model, where yi∈{ +1,-1} (i.e. the sign of f(x)
determines the class), but the weights β and constant term β0 are determined
differently. This new regularization again guarantees an unique solution.

• If the data is linearly separable, we minimize ||β|| subject to the constraints
yi(xi

T.β+β0)≥1 for ∀ i=1,2,...|TD|. See top left figure.
• If the data is not linearly separable, we

introduce slack variables ξi to let
some examples be on the wrong
side of the margin. See top right figure.
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Support Vector Machines (2)

This optimization problem is quadratic with linear inequality constraints and is
thus convex. A quadratic programming solution using Lagrange multipliers is
therefore feasible. An equivalent form of the nonseparable case is:

Parameter λ determines the weight given to optimizing the slack variables ξi
versus optimizing the margin.  The separable case corresponds to λ=∞.
The Lagrange primal function combines minimalization and constraints into a
single formula. The constraints are weighted by Lagrange multipliers αi and µi.

which will be maximized w.r.t. β, β0 and ξi. Setting the derivates to zero yields:
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A high-bias learner: Perceptron

Perceptron (linear binary threshold unit, linear model)
• Computes a linear function of x (assume adding an x0=1 to x, so that constant

term w0 can be handled). f(x) = sign(xT.w). w is initialized randomly.
• Perceptron training rule: w ← w+η(y-f(x)).xT, where y is the true output value

from training data (±1), and η is the learning rate.
• Intuitively, concept boundary is a hyperplane which separates classes +1 & -1.

Update rule is applied to each training example in turn, repeating until all
training examples are classified correctly. Provided η is small enough, and the
training set is linearly separable, this algorithm converges in a finite number of
steps. If data is not linearly separable, convergence is not assured.

© Alexander K. Seewald
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If the weight vector w is
initially set to all zeros,
the final w after
convergence will be a
linear combination of the
training examples, similar
to a SVM.



© Alexander K. Seewald
alex@seewald.at / alex.seewald.at

10

Support Vector Machines (3)
Features of the optimization problem for SVMs
• No local minima, only one global minimum – the maximal margin hyperplane.
• To solve the dual problem we need only the dot product xi

Txj for each
combination of training instances. The function computing the dot product,
K(u,v) is called kernel. This kernel trick enables us to expand the original
feature space via φ(x), thus learning a maximum margin hyperplane in higher-
dimensional feature space which gives a nonlinear decision boundary in the
original, lower-dimensional feature space. Usually only a few αi are nonzero -
the associated examples xi are called support vectors.
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• The weight vector β is a linear combinations of training examples xi . We can
use this relation to compute model f(x) via the kernel function. This allows us
even an infinite-dimensional φ(x),  i.e. m=∞, without explicit computation of β.
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Example: A Polynomial Kernel of Degree 2

Usually only the kernel function K(u,v) is defined explicitl y, and the feature
mapping φ is defined implicitl y. Not all functions can be written as dot product

⇒ Necessary and suff icient conditions for a kernel function in the finite case

• Symmetry: K(u,v)=K(v,u)

• Cauchy-Schwarz Inequality: K(u,v)2≤K(u,u)K(v,v)

• Kernel Matrix K is positive semi-definite

(xTKx≥0 for all x≠{ 0} p)

In the infinite-dimensional case: Mercer's Theorem

Common kernel functions

polynomial kernel of degree d: K(u,v)=(<u.v>+c)d   (linear kernel if d=1)

Radial basis function (RBF): K(u,v)=exp(-||u-v||2/c)

Kernels may be used as background domain knowledge, but are quite opaque.
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Sequential Minimal Optimization (SMO)

Many ways exist to solve the dual optimization problem iteratively. We wil l focus
on one simple algorithm, Sequential Minimal Optimization (SMO).

• Start with αi=0 for all i. This ensures that Σαiyi=0 initially.

• Choose αi , αj arbitrarily (usually by heuristic to speed up convergence)

• The partial solution for αi and αj can be computed analytically:
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nearer to the solution by
increasing LD   while
maintaining the simpler
constraints for the dual
problem, i.e. Σαiyi=0
Repeat until convergence
Determine β0=yi-f(xi)
(computing f(x) with
β0=0) by  averaging over
all support vectors 0<αi<λ
(implies ξi=0) for
numerical stability.
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Example: One Step of SMO

(from 2nd Lecture, Slide 11: coded nominal attributes as 1-of-n; normalized temp
& hum. to mean=0 and StD=1 by (t-19.5)/8.27 rand (h-73.8)/16.52)
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Complexity parameter λλ
Influence of  λλ on SVM performance
Linear kernel (φ(x)=x, d=1), λ=0.01
• Focusses more on data which is further away

from the maximum margin hyperplane. Bigger
margin reflects this behaviour. Error = 30.0%

Linear kernel (φ(x)=x, d=1), λ=10000
• Focusses more on data which is nearer to the

maximum margin hyperplane. Smaller margin
reflects this behaviour. Error = 28.8%

In both cases, all examples which are on the wrong
side of the margin are given weight depending
on their distance from the margin.

As we can see, the example is not well separable
with just a linear kernel. Can we do better?
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Non-linear Kernel Functions

Influence of Kernel on SVM performance

polynomial kernel of degree d=4, λ=1

• Non-linear decision boundary, small margin;
slightly better generalization performance but
tends to overshoot at the boundaries (a common
problem of polynomials): Error = 24.5%

Gaussian (RBF) kernel, c=0.01, λ=1

• Non-linear decision boundary, larger margin;
but almost optimal generalization performance.
Error = 21.8% vs. optimal Bayes Error = 21.0%.
This is probably due to the synthetic dataset
which was generated by a mixture of Gaussian
distributions.
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Linear Methods' Loss functions: Overview

Logistic regression, linear regression and SVMs all basically use the same model
f(x) = sign(xT.β+β0). However, for each of them the weights (β,β0) are estimated
by minimizing different loss functions.

max(0,1-y* f(x))SVM Loss

[Support Vector Machine]

(y-f(x))2(Residual) Squared Error

[Linear Regression]

log(1+exp(-y* f(x))(-)Binomial Log-Likelihood

[Logistic Regression]

Minimizing functionL(y,f(x))Loss function
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More complex linear models include cubic splines, wavelets and nonparametric
logistic regression (where log(probabili ty) may be an arbitrary function), and
additive mixtures of multiple linear models with far more complex loss functions.


