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Association Rule Mining

• Find rules of the form A ⇒ B where A and B are itemsets,
(i.e. sets of items) and A∩B=Ø.

• An item is a specific object which may either be part of an
itemset or not.

• Rules can related to any attribute; there is no target
variable (unsupervised as in Reinforcement Learning)

• Usually applied to binary data (market basket analysis);
Nominal variables can be transformed in the usual way
into one binary attribute per value. Each binary attribute
corresponds to an item with attri=1 ⇔ Item i is present.
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Association Rule Mining: Defs.

• T is the set of all possible items. When A,B⊆T, A∩B=Ø:
A⇒B is an association rule.

E.g. supermarket: Each distinct product is an item ∈ T.
Each transaction Tri corresponds to the products bought by
one shopper, and thus to a specific itemset. TD = { Tri} .

• Rules of the form A ⇒ B tell us about correlations
between itemsets, e.g. (milk,beer) ⇒ (diapers, babyfood)

• Rules are characterized by Support (how common is the
rule?), and Confidence (how well does rule A ⇒ B hold?)

• Algorithms to find all rules with given minimum Support
and Confidence exist, and are space- and time-eff icient.
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Support & Confidence

Itemset I is frequent ⇔ Support(I)  ≥ minimum support

Adding items: Support can only monotonically decrease
(P(I∪∪X)≤≤P(I)), since we add restrictions to the itemset.

⇒If an itemset I is frequent, all its subsets must also be
frequent. If any subset has lower support, then I cannot be
be frequent. This is an eff icient pruning criterion
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The Apriori Algorithm

Computes the set of all frequent itemsets.

Afterwards, compute all possible rules (partitions) of
frequent itemsets and output those with min. confidence.

Open-source Apriori implementation by C. Borgelt
http://fuzzy.cs.uni-magdeburg.de/~borgelt/apriori.html

L1 = { set of frequent items (=frequent itemsets of size 1)}
for (k=1; Lk!=Ø; k++) {

Ck+1 = { A∪B | A,B ∈ Lk, |A∪B|=k+1,
∀ X⊂(A∪B) ⇒ X∈(∪Lk)}

Lk+1 = { C | C ∈Ck+1 && Support(C) > MinSupp }
}
return ∪ Lk;
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Rules from Weather Dataset (nominal)

Minimum Support = 0.3, Minimum Confidence = 0.7
• outlook=overcast ⇒⇒ play=yes

supp: 0.28, conf: 1.0, lift: 1.56
• temperature=cool ⇒⇒ humidity=normal

supp: 0.28, conf: 1.0, lift: 2.0
• humidity=normal, windy=false ⇒⇒ play=yes

supp: 0.28, conf: 1.0, lift: 1.56
• humidity=normal ⇒⇒ play=yes

supp: 0.43, conf: 0.86, lift: 1.33
• play=no ⇒⇒ humidity=high

supp: 0.28, conf: 0.8, lift: 1.6
...
For large datasets, outputs a large set of rules (>1000), so

understanding rules is more challenging than mining.



© Alexander K. Seewald
alex@seewald.at / alex.seewald.at

7

Ex.: Computing Support and Confidence

• humidity=normal ⇒⇒ play=yes
su

pp
or

t=
6/

14
=

0.
43

confidence=6/7=0.86 (6x correct, 1x wrong)
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Information Visualization

No inherent spatial or temporal structure (contrary to
Scientific Visualization). Heterogenous, high-
dimensional data →→ use appropriate visual metaphors.
Interaction with the user in context of real-time
explorative data analysis offers the highest benefits.

Five general techniques
• Geometric: e.g. scatterplots and parallel coordinates.

• Icon-based: e.g. chernoff faces, stick figures, glyphs.
• Pixel-based: e.g. recursive patterns, circle segments.

• Hierarchical: e.g. cone/cam trees and treemaps.

• Graph-based: e.g. polylines and curved lines.
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Example: Visualizing Class Distributions
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Example (1): Scatterplots
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Example (2): Confidence Intervals
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Example (3): Sammon-Mapping
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Example (4): Glyph-based Visualization
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Example (5): Glyphs + Sammon Mapping
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Example (6): Cone Decision Trees
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Things We Did Not Talk About and Why

Clustering

• Groups data into clusters. Unsupervised, i.e. no class information available.

• No single field: Contains a variety different subproblems.

Neural Networks

• Unstable learning scheme, diff icult to master and control.

• In most practical application, learns an almost linear model(!)

• If interested: Neural Computation = 2+1h lecture by Prof. Dorffner

Genetic Algorithms

• Relies on specific problem structure to work well ~ experimental technique.

• Very high computational effort, but no guarantee of useful solution (compare
with Dynamic Programming which guarantees a global optimum solution; or
Monte Carlo Methods which rely on random sampling in solution space)

Hands-on Machine Learning / Data Mining tasks

• Topic of next-year's lecture AI Methoden der Datenanalyse (hopefully...)

• We will create our own training data for digit recognition et al.


